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We study the optimal performance of an information engine consisting of an overdamped Brownian bead
confined in a controllable, d-dimensional harmonic trap and additionally subjected to gravity. The trap’s
center is updated dynamically via a feedback protocol designed such that no external work is done by the
trap on the bead while maximizing the extraction of gravitational potential energy and achieving directed
motion. We show that performance improves when thermal fluctuations in directions perpendicular to
gravity are harnessed. This improvement arises from feedback cooling of these transverse degrees of
freedom, along which all heat is extracted. Strikingly, engines based on a single transverse degree of
freedom already outperform engines based solely on vertical (z) measurements. This engine design
modularizes the functions of harnessing fluctuations and storing free energy, drawing a close analogy to the
Szilard engine.
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Over a century ago, Maxwell proposed his famous
thought experiment, suggesting that information about a
system’s microscopic dynamics could be used to extract
useful energy without any work input—seemingly violat-
ing the second law of thermodynamics [1]. In the 1930s,
Szilard refined this idea by introducing the first concrete
model of what is now known as an information engine
[2,3]: a cyclic device that exploits thermal fluctuations by
applying feedback, thereby extracting heat from a thermal
bath. Its operation is reconciled with the second law by
Landauer’s principle: Processing and erasing information
about a system’s dynamics has a minimum cost [4,5].
Recent advances in technology and stochastic thermo-

dynamics [6–10] have enabled the experimental realization
of modern information engines [11–20]. This capability has
been used to test Landauer’s principle and quantify the cost
of information processing [21–27], cool nanoparticles to
millikelvin temperatures [28–30], and confirm the limits of
the second law [31–33]. Inspired by the ideas of Maxwell,
Szilard, and Landauer, researchers have even constructed
molecular-scale information engines, demonstrating that
synthetic cyclic molecular machines can indeed leverage
fluctuations to power their operation [34]. More recently, it
has been suggested that many of the molecular motors
operating within living cells (such as ATP synthase or
kinesin) may also work as information engines, harnessing
energy from the noisy cellular environment [35–39].
In previous work [40], Saha et al. designed and exper-

imentally realized an information engine that, in addition to

extracting energy from a thermal bath, stored such energy
in a gravitational potential by raising a weight. Their engine
consisted of a micron-scale bead in water, harmonically
confined via optical tweezers [41,42]. The trap center was
raised upon measuring a favorable “up” fluctuation of the
bead (parallel to gravity). Subsequent studies explored
performance for Bayesian inference of the bead’s position
under noisy measurements [43] and for nonequilibrium
active noise [44–46].
To date, information engines have been essentially one-

dimensional, exploiting fluctuations along a single degree
of freedom. Can harnessing fluctuations along additional
degrees of freedom further improve performance? In this
Letter, we generalize a theoretical study of the experimental
engine of [47] to d dimensions and find striking increases in
the rate of energy extraction and related measures of
performance. We show that the performance enhancement
results from feedback cooling of thermal fluctuations along
the transverse degrees of freedom, thereby extracting all
available heat, since all such fluctuations are favorable. We
demonstrate that feedback on the transverse degrees of
freedom alone can produce high output power, by analyz-
ing an engine variant in which we do not measure the
vertical z component. This engine design separates the
essential functions of harnessing fluctuations and storing
free energy, capturing a core feature of the original Szilard
engine. These results highlight the potential of higher-
dimensional fluctuations as a valuable resource in the
design of information engines and underscore the impor-
tance of choosing which degrees of freedom to measure and
their impact in overall engine performance.
Multidimensional information engine—Consider an opti-

cally trapped bead in d spatial dimensions, whose dynamics
are governed by the overdamped Langevin equation
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γṙ0ðt0Þ ¼ −κ½r0ðt0Þ − λ0ðt0Þ� −mgþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBTγ

p
ξðt0Þ; ð1Þ

for bead position r0ðt0Þ at time t0, isotropic harmonic trap
center λ0ðt0Þ, trap stiffness κ, bead mass m relative to the
surrounding fluid, gravitational acceleration g, friction coef-
ficient γ, Boltzmann constant kB, and thermal-bath temper-
ature T. ξðt0Þ is a vector of Gaussian white-noise fluctuations
of zero mean and correlations

D
ξðiÞðt01ÞξðjÞðt02Þ

E
¼ δijδðt01 − t02Þ; ∀ i; j ¼ 1;…; d: ð2Þ

We nondimensionalize the problem by scaling lengths with
the equilibrium standard deviation σeq ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=κ

p
of

the bead’s position and time with the relaxation time
τr ≡ κ=γ. This yields the dimensionless variables t≡ t0=τr,
rðtÞ≡ r0ðt0Þ=σeq, and λðtÞ≡ λ0ðt0Þ=σeq and the dimension-
less overdamped Langevin equation

ṙðtÞ ¼ −½rðtÞ − λðtÞ� − δg þ
ffiffiffi
2

p
ξðtÞ; ð3Þ

where δg ≡mg=κσeq is a dimensionless vector quantifying
the gravitational force relative to the amplitude of thermal
fluctuations. Figure 1 illustrates the system for d ¼ 2.
The total, time-dependent potential for the bead results

from the combination of the optical trap and the gravita-
tional force:

Vðr; λðtÞÞ ¼ 1

2
jr − λðtÞj2 þ r⊤δg: ð4Þ

The bead’s position is measured at discrete time intervals of
duration ts, and the feedback on the trap position is applied
immediately. Integrating Eq. (1) over one time step pro-
vides the discrete-time dynamics [47,48]:

rnþ1 ¼ e−tsrn þ ð1 − e−tsÞðλnþ − δgÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e−2ts

p
νn; ð5Þ

for time step number n and vector νn of Gaussian random
variables with zero mean and correlations

D
νðiÞn νðjÞn0

E
¼ δijδnn0 ; ∀ i; j ¼ 1;…; d: ð6Þ

The subscript nþ indicates that λ is updated aftermeasuring
r. To simplify analysis and aid physical interpretation, we
choose an orthogonal coordinate system such that r ¼
ðxð1Þ; xð2Þ;…; xðd−1Þ; zÞ and λ ¼ ðλð1Þ; λð2Þ;…; λðd−1Þ; λðzÞÞ,
for z the degree of freedom parallel to the gravitational
force. With this choice of coordinates, z is influenced
by both the gravitational force and the harmonic trap,
whereas the remaining degrees of freedom are driven only
by the harmonic trap. Throughout, fxðiÞg and fλðiÞg are the
transverse components of the bead and trap center, respec-
tively, which live on the orthogonal (d − 1)-dimensional
space Rd−1.
After updating bead position rn to rnþ1, the trap position

λ is updated according to a feedback algorithm, chosen
(following [47]) to optimize two performance metrics. The
first metric is the net output power

Pnet ¼ fsðhΔFi − hWiÞ; ð7Þ

for sampling frequency fs ≡ 1=ts, and per-measurement
average stored equilibrium free energy hΔFi and work
hWi done on the bead. The averages are taken over the
system probability distribution at steady state. Here, work is
the instantaneous change in the total potential when the trap
center λ is updated:

Wnþ1 ≡ Vðrnþ1; λnþþ1Þ − Vðrnþ1; λnþÞ ð8aÞ

¼ 1

2
jrnþ1 − λnþþ1j2 −

1

2
jrnþ1 − λnþj2: ð8bÞ

By convention, work is positive if energy flows into the
system from the harmonic trap. Similarly, the average stored
equilibrium free energy is

hΔFi ¼ δg
D
λðzÞnþþ1

− λðzÞnþ

E
: ð9Þ

From the first law of thermodynamics for the bead at
steady state, the net output power Pnet equals the rate of
heat extraction from the environment [40]. This follows
from the assumption that no energy is exchanged between
the bead and the controller, such that all stored energy is in
the form of gravitational free energy. We focus on pure
information engines, where exactly no work is done by
each trap movement (Wnþ1 ¼ 0). As a result, these engines
store useful free energy by exploiting thermal fluctuations
alone: Heat is continuously extracted from the thermal bath
without any external work input.
The feedback algorithm is then chosen such that (i) the

harmonic trap does no work on the system and (ii) the

FIG. 1. Schematic for d ¼ 2: a Brownian bead (blue dot) at
position r ¼ ðx; zÞ experiences the gravitational force in the z
direction and the action of a confining optical trap (red dot and
area) centered at λ.
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stored free energy is maximized (Sec. I in Supplementary
Material [49]), giving

λnþþ1 ¼ rnþ1 þ jrnþ1 − λnþjẑ; ð10Þ

for unit vector ẑ. The zero-work condition Wnþ1 ¼ 0
constrains λnþþ1 to a hypersphere centered at rnþ1 with
radius jrnþ1 − λnþj, and the free-energy maximization
further restricts λnþþ1 to the top of this hypersphere.
Thus, a down fluctuation in z does not prevent harnessing
a simultaneous lateral fluctuation to lift the equilibrium trap
position. Figure 2 illustrates both the zero-work condition
and the optimal feedback rule (10) for a d ¼ 2 pure
information engine.
Resolving the vertical and transverse components gives

λðzÞnþþ1
¼ znþ1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
znþ1 − λðzÞnþ

�
2þ

Xd−1
j¼1

�
ΔxðjÞnþ1

�
2

vuut ; ð11aÞ

λðiÞnþþ1
¼ xðiÞnþ1; i ¼ 1; 2;…; d − 1; ð11bÞ

with bead update ΔxðjÞnþ1 ≡ xðjÞnþ1 − xðjÞn ¼ xðjÞnþ1 − λðjÞnþ equal-
ing the bead position relative to the trap center. The trap’s z
component stores gravitational free energy, while the
transverse components track the bead’s transverse position
(so transverse fluctuations are isotropic), effectively enact-
ing a feedback cooling protocol that maximizes heat
extraction in Brownian engines [51]. Any gain in potential
energy due to transverse fluctuations is transferred to stored
free energy during the subsequent trap update.
The second performance metric is the long-time average

z velocity hvzi, which for a pure information engine is
proportional to the output power [47]:

Pnet ¼ δghvzi: ð12Þ

This metric is directly accessible in experiments and
quantifies the information engine’s ability to generate
directed motion against the load from an external force.
Optimal performance—We first examine the dependence

of performance on the sampling frequency fs for fixed
δg ¼ 0.8, chosen because it was previously shown to
(approximately) maximize the output power for d ¼ 1
[47]. In Fig. 3, we compare the performance of a d ¼ 2
engine with the previously characterized d ¼ 1 engine. The
two engines exhibit similar behavior. At high sampling
frequencies, the output power and heat extraction saturate.
In this regime, the trap-center dynamics approximately
follow a Langevin-like equation, producing maximum
output power

PHF
netðδgÞ ¼ ðd − 1Þδg

Zd−1ðδgÞ
ZdðδgÞ

; ð13Þ

for partition function

ZdðδgÞ≡
Z

∞

0

dLLd−1e−L
2=2þδgL; ð14Þ

expressible in terms of hypergeometric functions (Sec. II in
Supplementary Material [49]). Equation (13) holds even for
d → 1, recovering the d ¼ 1 expression for the output
power from [47].
At low sampling frequencies fs, ratchet events occur

with frequency proportional to fs, as the bead’s position
equilibrates between measurements. Consequently, the
average stored equilibrium free energy in Eq. (9) reaches
a constant value, so the output power is linear in fs (Sec. III
in Supplementary Material [49]). The transition between
the two limiting behaviors takes place around fs ¼ 1,

FIG. 2. Schematic of the zero-work condition and the optimal
feedback rule maximizing free-energy storage for d ¼ 2. The
dashed circle shows possible updated positions λnþþ1 for the trap
center, given rnþ1 and λnþ , for which no work is exerted on the
bead. The updated trap center lies at the top of a hypersphere
centered at rnþ1 with radius jrnþ1 − λnþ j.

FIG. 3. Information-engine output power Pnet as a function of
sampling frequency fs, for d ¼ 2 (red) and d ¼ 1 (black). Solid
curves: semianalytic steady-state calculations (Sec. IV in Sup-
plementary Material [49] and [47]). Dashed gray lines: analytic
results in the low-sampling-frequency limit (Sec. III in Supple-
mentary Material [49]) and the high-sampling-frequency limit
(13). The dotted vertical line indicates fs ¼ 1. We set δg ¼ 0.8,
the value that approximately maximizes the output power for
d ¼ 1 [47].
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where the sampling time ts ≈ τr. Despite the similar trends,
the d ¼ 2 engine nearly doubles the output power attained
by its d ¼ 1 counterpart.
The comparison between the performances of the d ¼ 2

and d ¼ 1 information engines already suggests that
fluctuations in degrees of freedom perpendicular to gravity
can be exploited to enhance heat extraction. In Sec. V in
Supplementary Material [49], we investigate whether it is
better to exploit all such transverse fluctuations or to wait
for rare large ones which give a higher increase in stored
free energy. To address this, we introduce a modified
feedback rule, in which the trap center is updated only
when, at the time of measurement, the bead lies outside a
cylinder of radius R. The threshold R setting the minimum
fluctuation size is centered on the trap position and aligned
with the z axis. We show that the output power decreases
monotonically with R, maximized at R ¼ 0. Therefore, the
optimal strategy exploits all available transverse fluctua-
tions, regardless of their size.
Having shown that continuous sampling and continuous

ratcheting optimize performance, we study the dependence
of the output power and the vertical velocity on the
dimensionless force δg. For d ¼ 1, the optimal output
power at δ�g ≈ 0.8 arises from two competing factors: On
the one hand, as we increase δg from 0, the potential energy
to extract increases. On the other hand, the magnitude of the
opposing force also increases, making significant up
fluctuations unlikely. This competition leads to maximum
output power at an intermediate δg.
Surprisingly, the nonmonotonic dependence on δg is not

seen in higher dimensions. Figure 4 shows the output power
and the vertical velocity as functions of the opposing
gravitational force δg, for different dimensions. The output
power is maximized in the δg → ∞ limit for d > 1, asymp-
toting to d − 1, which implies that the velocity decays to zero
algebraically as δg increases (∼1=δg), in contrast to the
exponential expf−δ2g=2g decay in one dimension [47].
Approximating the partition function (14) for δg → ∞ using
Laplace’s method [50] gives PHF

netðδgÞ ∼ d − 1.
The fact that the output power asymptotically approaches

d − 1 (in dimensionless units) for large δg has striking
implications. The output power is bounded above by the
value attained under feedback cooling—where the trap
follows the bead after each measurement, thereby extracting
all the thermal fluctuations in potential energy. For feedback
cooling, the power extracted by each independent degree of
freedom is 1 [51], and, hence, the overall power for d − 1
feedback-cooled degrees of freedom equals d − 1. Our
findings suggest that our information engine extracts the
maximum possible power from the d − 1 transverse degrees
of freedom, while the z component contributes no significant
heat extraction, since in this limit useful up fluctuations
against gravity become very unlikely. This interpretation
is supported by the explicit componentwise form of the

feedback rule in Eq. (10): The z degree of freedom adjusts to
satisfy the zero-work condition, whereas the transverse
degrees of freedom follow the feedback-cooling protocol,
thereby maximizing heat extraction along those directions.
Ignoring vertical fluctuations—In the previous section,

we showed that, in the δg ≫ 1 limit, the output power of a d-
dimensional information engine is equal to feedback cooling
of the d − 1 degrees of freedom perpendicular to the
gravitational force. The z-component fluctuations, parallel
to gravity, do not contribute to the engine’s performance.
This observation raises a natural question: Is it necessary to
measure the z component in this regime, or is it sufficient to
measure only the transverse components?To address this,we
consider a partial information engine, in which the feedback
rule depends only on measurements of the d − 1 transverse
degrees of freedom, ignoring the z component of the bead’s
position. For clarity,we refer to thepreviously studied system
as the complete information engine.
Since we do not measure the z component, the zero-work

condition Wnþ1 ¼ 0 cannot be rigorously fulfilled at each
time step. Instead, we design a feedback rule for a pure
information engine such that the average work hWnþ1i is
zero. This dictates a feedback rule for λðzÞnþþ1

of the form

(a)

(b)

FIG. 4. Output power (a) and vertical velocity (b) as functions
of the scaled gravitational force δg, in the high-sampling
frequency limit, for different dimensions. Solid curves: analytic
results (13) (Sec. II in Supplementary Material [49]). Dashed
curves: partial information engine from Eq. (16). Dotted lines:
asymptotic limit d − 1 for δg → ∞. Inset in (b): log-log plot
highlighting the algebraic decay for large δg, whose analytic form
is represented by dotted lines.
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λðzÞnþþ1
¼ λðzÞnþ þ

D
znþ1 − λðzÞnþ

E

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiD
znþ1 − λðzÞnþ

E
2 þ

Xd−1
j¼1

�
ΔxðjÞnþ1

�
2

vuut ; ð15Þ

with λðiÞnþþ1
following Eq. (11b). The averages are taken

over the steady-state distribution for the relative displace-

ments znþ1 − λðzÞnþ . In Sec. VI in Supplementary Material
[49], we derive an analytical expression for the output
power in the limit of high sampling frequencies:

PHF
netðδgÞ ¼

2ðd − 1Þ
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðd − 1Þ=δ2g

q : ð16Þ

Figure 4(a) shows that the complete and partial information
engines attain the same output power for δg → ∞, consistent
with our previous result that, in that limit, the z fluctuations do
not contribute to free-energy extraction. For intermediate δg,
Fig. 4(a) shows that measuring z has some small advantage,
permitting the harnessing of some z fluctuations. But even in
the simplest scenario, measuring a single transverse degree of
freedom (x for the d ¼ 2 partial information engine) increases
output power remarkably compared to measuring only z as in
the original d ¼ 1 engine.
Conclusions—We have studied the theoretical perfor-

mance of an information engine that harnesses thermal
fluctuations in a d-dimensional overdamped system to
achieve directed motion against gravity, thus converting
heat from the thermal bath into stored gravitational poten-
tial energy. Systematically optimizing the engine’s output
power and velocity, we have shown that our d > 1-dimen-
sional engine significantly outperforms the previously
studied d ¼ 1 engine [41,47]. The increase in stored free
energy per dimension can be viewed as a decrease in the
available phase-space volume following the symmetry-
breaking event of measuring the bead’s position [52].
The mechanism behind this enhancement is intimately

related to feedback cooling: The d − 1 transverse degrees of
freedom each extract kBT=τr—the maximum amount of heat
available per dimension—whereas heat extraction in the z
component is limited by gravity. Indeed, in the δg → ∞ limit,
the output power saturates to d − 1 (in units of kBT=τr),
implying that operation is sustained only by the transverse
degrees of freedom. This is further confirmed by the partial
information engine considered in Eq. (15): Even without
measurements of the bead’s z component, the engine still
achieves the same limiting performance for large δg, with
minor deviations from the complete engine for intermediate
values of δg. These results suggest that choosing which
degrees of freedom to measure may play a dominant role in
the overall engine performance. This is similar to the problem
of identifying suitable reaction coordinates for efficient
enhanced sampling of free-energy landscapes in complex

molecular systems [53,54]. Thus, our Letter provides a design
principle that could guide the next-generation of nanoscale
energy-harvesting devices [55–57].
In this Letter, we have focused on maximizing engine

performance, without considering the information costs that
result from nearly continuous measurement of the bead’s
position. An important direction for futurework involves the
experimental realization of the d ¼ 2 and d ¼ 3 engines
based on nanoscale Brownian objects confined in optical
traps, which are straightforward extensions of existing d ¼ 1
information engines [47,51]. Further research could also
consider the measurement and information-processing costs
of the measuring devices and uncertainties in position and
time measurements. A full accounting of all entropy pro-
duction requires including these information-processing
costs [11,18,58–60]. The high-sampling-frequency limit
(where we measure much faster than the system’s character-
istic dynamical timescales) pays large information costs for
diminishing benefit. The partial information engine from
Eq. (15) is thus more efficient, gathering and processing less
information to attain similar heat extraction.
More broadly, it would be interesting to explore the role

of higher-dimensional fluctuations in different information
engines involving more complex physical mechanisms.
Promising directions include underdamped dynamics
[26,61–65], where applying feedback to velocity measure-
ments improves engine control [66,67]; multicomponent
molecular motors, where energy and information flow
between the system’s different components to transduce
free energy [35–39]; and active noise, where the non-
equilibrium bath serves as an additional source of fluctua-
tions [45,68–72], giving information engines a potential
advantage over conventional heat engines.
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Ficheux, J. Anders, A. Auffèves, R. Azouit, P. Rouchon, and
B. Huard, Observing a quantum Maxwell demon at work,
Proc. Natl. Acad. Sci. U.S.A. 114, 7561 (2017).

[15] Y. Masuyama, K. Funo, Y. Murashita, A. Noguchi, S. Kono,
Y. Tabuchi, R. Yamazaki, M. Ueda, and Y. Nakamura,
Information-to-work conversion by Maxwell’s demon in a
superconducting circuit quantum electrodynamical system,
Nat. Commun. 9, 1291 (2018).

[16] J. V. Koski, V. F. Maisi, J. P. Pekola, and D. V. Averin,
Experimental realization of a Szilard engine with a single
electron, Proc. Natl. Acad. Sci. U.S.A. 111, 13786 (2014).

[17] K. Chida, S. Desai, K. Nishiguchi, and A. Fujiwara, Power
generator driven by Maxwell’s demon, Nat. Commun. 8,
15310 (2017).

[18] T. Admon, S. Rahav, and Y. Roichman, Experimental
realization of an information machine with tunable temporal
correlations, Phys. Rev. Lett. 121, 180601 (2018).

[19] R. Goerlich, L. Hoek, O. Chor, S. Rahav, and Y. Roichman,
Experimental realizations of information engines: Beyond
proof of concept, Europhys. Lett. 149, 61001 (2025).

[20] M. Baldovin, I. Ben Yedder, C. A. Plata, D. Raynal, L.
Rondin, E. Trizac, and A. Prados, Optimal control of

levitated nanoparticles through finite-stiffness confinement,
Phys. Rev. Lett. 135, 097102 (2025).

[21] A. Bérut, A. Arakelyan, A. Petrosyan, S. Ciliberto, R.
Dillenschneider, and E. Lutz, Experimental verification of
Landauer’s principle linking information and thermody-
namics, Nature (London) 483, 187 (2012).

[22] Y. Jun, M. Gavrilov, and J. Bechhoefer, High-precision test
of Landauer’s principle in a feedback trap, Phys. Rev. Lett.
113, 190601 (2014).

[23] J. V. Koski, V. F. Maisi, T. Sagawa, and J. P. Pekola,
Experimental observation of the role of mutual information
in the nonequilibrium dynamics of a Maxwell demon, Phys.
Rev. Lett. 113, 030601 (2014).

[24] J. Hong, B. Lambson, D. Scott, and J. Bokor, Experimental
test of Landauer’s principle in single-bit operations on
nanomagnetic memory bits, Sci. Adv. 2, e1501492 (2016).

[25] S. Ciliberto, Landauer’s bound and Maxwell’s demon, in
Information Theory: Poincaré Seminar 2018, edited by B.
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Supplemental Material for
“Harnessing higher-dimensional fluctuations in an information engine”

I. ZERO-WORK CONDITION AND OPTIMAL FEEDBACK RULE

Here we derive the zero-work condition and the optimal feedback rule (10) for a pure information engine in d-
dimensions, as described in Multidimensional information engine in the main text. We recall from there that work is
defined as the change in the total potential due to the update of the center of the harmonic trap (8a).

The zero-work (pure information engine) condition is thus

Wn+1 = 0 ⇐⇒ |rn+1 − λn++1| = |rn+1 − λn+ | . (I.1)

Thus λn++1 lies on a hypersphere centered at rn+1 with radius |rn+1 − λn+ |. Contrary to the one-dimensional
information engine from [1], here there are infinitely many possible positions for the updated trap center λn++1. In
the following, we choose the feedback rule for λn++1 to maximize the extracted gravitational free energy.

Given a fixed trap center λ, the equilibrium free energy is

F (λ) ≡ ⟨V (r,λ) + log π(r|λ)⟩π(r|λ) , (I.2)

for canonical equilibrium distribution

π(r|λ) ≡ 1

Z(λ)
e−V (r,λ) (I.3)

and the corresponding partition function

Z(λ) ≡
∫

dr e−V (r,λ) , (I.4)

which is a Gaussian integral since the potential (4) is harmonic. Combining Eqs. (I.2)-(I.4) results in

F (λ) = − logZ(λ) (I.5a)

= δ⊤g λ+ F (0) (I.5b)

= δgλ
(z) + F (0) , (I.5c)

with F (0) the free energy for λ = 0. Thus, the stored equilibrium free energy between measurements is

⟨∆F ⟩ = ⟨F (λn++1)− F (λn+)⟩ (I.6a)

= δg

〈
λ
(z)
n++1 − λ

(z)
n+

〉
. (I.6b)

This only depends on the trap center’s z-component; maximizing this z-component means the updated trap center
lies at the top of the hypersphere defined via (I.1). Hence, the optimal feedback rule is

λn++1 = rn+1 + |rn+1 − λn+ | ẑ , (I.7)

for unit vector ẑ in the z-direction.

II. HIGH-SAMPLING-FREQUENCY LIMIT

Here we derive Eq. (13) from Optimal performance in the main text, the analytical expression for the output power
PHF
net in the high-sampling-frequency limit.
For sufficiently high sampling frequency fs, λ evolves almost continuously in time. We first consider the differential

change dλ
(z)
n++1 ≡ λ

(z)
n++1−λ

(z)
n+ of λ(z), given differential change drn+1 ≡ rn+1−rn of the bead position. The feedback

rule (10) and feedback cooling of the transverse degrees of freedom (dictating λ
(i)
n+ = x

(i)
n ) gives

dλ
(z)
n++1 = dzn+1 − Ln +

√√√√(Ln − dzn+1)2 +

d−1∑
j=1

(
dx

(j)
n+1

)2
, (II.1)



2

for trap-bead displacement Ln ≡ λ
(z)
n+ − zn after the feedback. Since λn+ always lies at the top of the hypersphere

defined by the zero-work condition, Ln ≥ 0. For sufficiently short sampling time ts, the displacements dzn+1 and

dx
(i)
n+1 are small and of the same order: dzn+1,dx

(i)
n+1 ∼ O(

√
ts). Taylor expanding Eq. (II.1) up to leading orders in

dzn+1 and dx
(i)
n+1 yields z trap-center displacement

dλ
(z)
n++1 ≈ 1

2Ln

d−1∑
i=1

(
dx

(i)
n+1

)2
(II.2a)

≈ 1

Ln

d−1∑
i=1

(
dW

(i)
t

)2
(II.2b)

=
d− 1

Ln
dt , (II.2c)

and hence vertical velocity

λ̇
(z)
n++1 ≡

dλ
(z)
n++1

dt
(II.3a)

=
d− 1

Ln
. (II.3b)

In Eq. (II.2b), we employed the bounded quadratic variation formula (dWt)
2 = dt for Wiener processes, which follows

from Ito’s lemma [2].
To proceed further, we determine the steady-state distribution pss(L) for the trap-bead displacements Ln. Com-

bining Eqs. (II.2b) and (5) gives the stochastic differential equation for Ln:

dLn+1 ≡ Ln+1 − Ln (II.4a)

= dλ
(z)
n++1 − dzn+1 (II.4b)

≈ (δg − Ln)dt+
1

2Ln

d−1∑
i=1

(
dW

(i)
t

)2
−

√
2 dW

(z)
t . (II.4c)

Its corresponding distribution dynamically evolves according to the Fokker-Planck equation

∂p

∂t
=

∂

∂L

[(
L− δg −

d− 1

L

)
p+

∂p

∂L

]
, (II.5)

which has steady-state distribution

pss(L) =
1

Zd(δg)
Ld−1 e−L2/2+δgL , (II.6)

for partition function

Zd(δg) ≡
∫ ∞

0

dL Ld−1 e−L2/2+δgL (II.7a)

= 2(d−3)/2

[
√
2Γ

(
d

2

)
1F1

(
d

2
,
1

2
,
δ2g
2

)
+ 2δg Γ

(
1 + d

2

)
1F1

(
1 + d

2
,
3

2
,
δ2g
2

)]
. (II.7b)

Here 1F1(a, b, c) is the confluent hypergeometric function of the first kind. This gives output power

PHF
net = (d− 1)δg

〈
1

L

〉
(II.8a)

= (d− 1)δg
Zd−1(δg)

Zd(δg)
. (II.8b)
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and vertical velocity

⟨vz⟩HF
= (d− 1)

Zd−1(δg)

Zd(δg)
, (II.9)

corresponding to Eq. (13) from the main text.
Given that the velocity monotonically decreases with δg, the maximum is attained at δg = 0,

max
δg

[
⟨vz⟩HF

]
= (d− 1)

Zd−1(0)

Zd(0)
(II.10a)

=
d− 1√

2

Γ
(
d−1
2

)
Γ
(
d
2

) . (II.10b)

This expression holds even for d → 1, giving
√
2/π. In the δg → ∞, the integral from (II.7a) can be approximated

using Laplace’s method [3], giving the asymptotic limit

Zd(δg) ∼
√
2π δdg e

δ2g/2 . (II.11)

This expression is employed in the main text to obtain the asymptotic value d− 1 for the output power.

III. LOW-SAMPLING-FREQUENCY LIMIT

Here we derive an analytical expression for the output power PLF
net in the low-sampling-frequency limit.

When the sampling frequency fs is small, between successive feedback steps the bead-position distribution equili-
brates, giving the canonical equilibrium distribution

peq(r;λ) = Nd(r|λ− g; 1) (III.1a)

= N1(z|λ(z) − δg; 1)

d−1∏
i=1

N1(x
(i)|λ(i); 1) . (III.1b)

where Nd(x|µ;σ2) denotes a d-dimensional normal (Gaussian) distribution over x, with mean µ and variance σ2.
Combining this and the feedback rule (10) gives the average equilibrium free-energy storage per feedback step,

⟨∆F ⟩eq = δg

∫
Rd

dr

z − λ(z) +

√√√√(z − λ(z))2 +

d−1∑
j=1

(x(j) − λ(j))2

 peq(r;λ) (III.2a)

= δg

∫
Rd

dz

[
d−1∏
i=1

dx(i) N1(x
(i)|λ(i); 1)

]z − λ(z) +

√√√√(z − λ(z))2 +

d−1∑
j=1

(x(j) − λ(j))2

N1(z|λ(z) − δg; 1)

(III.2b)

= −δ2g +
δg 2(1−d)/2

√
π Γ
(
d−1
2

) ∫ +∞

−∞
dz̃

∫ +∞

0

dr rd−2
√
z̃2 + r2 exp

{
−r2

2
− (z + δg)

2

2

}
. (III.2c)

In Eq. (III.2c), we made two changes of variables: (i) z̃ = z − λ(z) and (ii) change to spherical coordinates for the
d−1 perpendicular degrees of freedom. Therefore, in the limit of low sampling frequency the output power is

PLF
net = fs ⟨∆F ⟩eq . (III.3)

This gives the gray dashed diagonal lines in Fig. 3.

IV. STEADY STATES FOR ARBITRARY SAMPLING FREQUENCY

Here we provide the details for the semi-analytical method employed to obtain the output power Pnet for arbitrary
sampling frequencies fs in arbitrary d > 1 dimensions, which we employed for the solid red curve in Fig. 3.



4

To determine the output power for arbitrary sampling frequency, we follow the reasoning of [1]. First, we derive
a self-consistency equation for the steady-state position distribution as a function of sampling frequency, which we
evaluate numerically. The joint transition probability from bead position rn and trap center λn+ to rn+1 and λn++1

is

p(rn+1,λn++1| rn,λn+) = pλ(λn++1| rn+1,λn+)︸ ︷︷ ︸
feedback

pr(rn+1| rn,λn+)︸ ︷︷ ︸
propagator

. (IV.1)

The bead-position propagator pr(rn+1| rn,λn+) for diffusion in a harmonic potential is given by the generator for a
d-dimensional Ornstein-Uhlenbeck process,

pr(rn+1| rn,λn+) = Nd(rn+1|µ(rn,λn+ , ts);σ(ts)
2) , (IV.2)

with mean

µ(rn,λn+ , ts) ≡ e−ts rn + (1− e−ts)(λn+ − δg) , (IV.3)

and standard deviation σ(ts) ≡
√
1− e−2ts at time ts. The propagator pλ(λn++1| rn+1,λn+) for the trap center

follows from the feedback rule (10):

pλ(λn++1| rn+1,λn+) = δd(λn++1 − rn+1 − |rn+1 − λn+ |ẑ) . (IV.4)

Here, δd(·) denotes the d-dimensional Dirac delta function. Changing variables to relative coordinates

rrn+ ≡ rn+1 − λn+ (IV.5a)

rrn ≡ rn − λn+ (IV.5b)

yields

pr(r
r
n+ | rn,λn+) =

∫
Rd

drn+1 δd(rn+1 − rrn+ − λn+) pr(rn+1|rn,λn) (IV.6a)

= Nd(r
r
n+ |µ(rrn,0, ts);σ(ts)2) (IV.6b)

≡ p1(r
r
n+ | rrn) (IV.6c)

pλ(r
r
n+1|rn+1,λn+) =

∫
Rd

dλn++1 δd(λn++1 − rn+1 + rrn+1) pλ(λn++1|rn+1,λn) (IV.6d)

= δd(r
r
n+1 + | rrn+ |ẑ) (IV.6e)

≡ p2(r
r
n+1 | rrn+) . (IV.6f)

The steady-state solutions satisfy the self-consistent integral equations

π+ (rrn+) =

∫
Rd

du

∫
Rd

dv p1 (r
r
n+ | v) p2(v | u)︸ ︷︷ ︸

≡T(rr
n+ |u)

π+(u) (IV.7a)

π (rrn) =

∫
Rd

dv

∫
Rd

du p2 (r
r
n | u) p1(u | v)︸ ︷︷ ︸

≡ T̃ (rr
n|v)

π(v) , (IV.7b)

where u and v are d-dimensional vectors of dummy variables of integration, and the propagators are

T (rrn+ | u) = Nd

(
rrn+

∣∣∣µ(−|u|ẑ,0, ts);σ(ts)2
)

(IV.8a)

= N1

(
zrn+

∣∣∣ µz(−|u|, 0, ts);σ(ts)2
) d−1∏

i=1

N1

(
x
(i),r
n+

∣∣∣ 0;σ(ts)2) (IV.8b)

T̃ (rrn | v) =
∫
Rd

du δd(r
r
n + |u|)Nd

(
u
∣∣∣µ(v,0, ts);σ(ts)2) (IV.8c)

=

[∫
|ω|=1

dω Nd

(
− zrnω

∣∣∣µ(v,0, ts);σ(ts)2)] (−zrn)
d−1 Θ(−zrn)

d−1∏
i=1

δ1

(
x(i),r
n

)
. (IV.8d)
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In principle, one can numerically solve for the steady-state distributions (IV.7) by discretizing the propagator

T
(
rrn+ | u

)
in rrn+ and u and the propagator T̃ (rrn | v) in rrn and v. The corresponding eigenvectors with unit

eigenvalue give the distributions π+(r
r
n+) and π(rrn), respectively.

Determining the eigenvalues of the propagators T
(
rrn+ | u

)
and T̃ (rrn | v) is in practice often challenging, since

it involves the discretization of d-dimensional integrals on a sufficiently fine grid in order to achieve high accuracy,
a task that becomes increasingly computationally expensive as the dimensionality increases. In the following, we
reduce the d-dimensional integral eigenvalue problem (IV.7) to an effective one-dimensional problem. We note that

the propagators T
(
rrn+ | u

)
and T̃ (rrn | v) from Eqs. (IV.8) each factorize into the product of a function depending

only on the transverse degrees of freedom x(i), i = 1, ..., d − 1 and a function depending only on the parallel (z)
component and the integration variables u and v. Following this, inserting Eqs. (IV.8) into Eqs. (IV.7) shows that
the steady-state distributions obey a principle of separation of variables:

π+(r
r
n+) =

d−1∏
i=1

N1

(
x
(i),r
n+

∣∣∣ 0;σ(ts)2)∫
Rd

du N1

(
zrn+

∣∣∣ µz(−|u|, 0, ts);σ(ts)2
)
π+(u)︸ ︷︷ ︸

≡g+(zr
n+ )

(IV.9a)

π(rrn) = (−zrn)
d−1 Θ(−zrn)

d−1∏
i=1

δ1

(
x(i),r
n

) ∫
Rd

dv

∫
|ω|=1

dω Nd

(
− zrnω

∣∣∣µ(v,0, ts);σ(ts)2)π(v)︸ ︷︷ ︸
≡g(zr

n)

, (IV.9b)

for unknown functions g+(z
r
n+) and g(zrn). Inserting Eqs. (IV.9) into the definitions of g+(z

r
n+) and g(zrn) gives

g+(z
r
n+) =

∫
Rd

du N1

(
zrn+

∣∣∣µz(−|u|, 0, ts);σ(ts)2
)
g+(uz)

d−1∏
i=1

N1

(
u(i)

∣∣∣ 0;σ(ts)2) (IV.10a)

=

∫
R
duz

d−1∏
i=1

[∫
R
du(i)N1

(
u(i)

∣∣∣ 0;σ(ts)2)]N1

(
zrn+

∣∣∣µz(−|u|, 0, ts);σ(ts)2
)

︸ ︷︷ ︸
≡ Teff(zr

n+ |uz)

g+(uz) (IV.10b)

g(zrn) =

∫
Rd

dv

∫
Rd

dω δd(|ω| − 1)Nd

(
− zrnω

∣∣∣µ(v,0, ts);σ(ts)2) g(vz) |vz|d−1 Θ(−vz)

d−1∏
i=1

δ1

(
v(i)
)

(IV.10c)

=

∫
R
dvz

∫
|ω|=1

dω N1

(
− zrnωz

∣∣∣µz(vz, 0, ts);σ(ts)
2
) d−1∏

i=1

N1

(
− zrnω

(i)
∣∣∣ 0;σ(ts)2)|vz|d−1Θ(−vz)︸ ︷︷ ︸

≡ T̃eff(zr
n|vz)

g(vz) .

(IV.10d)

Hence, the functions g+(z
r
n+) and g(zrn) satisfy the effective one-dimensional eigenvalue problems

g+(z
r
n+) =

∫
R
du Teff(z

r
n+ |u) g+(u) (IV.11a)

g(zrn) =

∫
R
dv T̃eff(z

r
n|v) g(v) . (IV.11b)

The factorisation from Eq. (IV.9) can be understood on physical grounds, stemming from the feedback-cooling pro-

tocol (10) in the transverse degrees of freedom (λ(1), λ(2), ...λ(d−1)). On the one hand, since λ
(i)
n++1 = xn+1, or,

more generally, λ
(i)
n+ = xn ∀n, the probability distribution π(i)

(
x
(i),r
n

)
(after moving the trap center) for the relative

displacements x
(i),r
n = x

(i)
n −λ

(i)
n+ is a Dirac-delta distribution centered at the origin, π(i)

(
x
(i),r
n

)
= δ1

(
x
(i),r
n

)
. On the

other hand, the bead’s transverse coordinates x
(i)
n subsequently evolve according to the discrete Langevin equation

(5),

x
(i)
n+1 = e−tsx(i)

n + (1− e−ts)λ
(i)
n+ + σ(ts)ν

(i)
n , i = 1, ..., d− 1 . (IV.12)
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FIG. 1. Dynamics of the transverse degrees of freedom (x, for a 2D engine), justifying the factorisation (IV.9) for the
steady-state distributions π+(r

r
n+) and π(rr

n). (a) Immediately after a trap update, the bead and the trap have the same
x-component; the distribution of relative displacements then reduces to a Dirac delta (inset). (b) After a time ts, the bead’s
position is distributed according to the discrete Langevin equation (5). The relative bead-trap displacement along x is drawn
from a Gaussian distribution with zero mean and standard deviation σ(ts) (inset).

Invoking once again the feedback rule λ
(i)
n+ = x

(i)
n from Eq. (10), the Langevin equation reduces to

x
(i)
n+1 − λ

(i)
n+ = σ(ts)ν

(i)
n ; (IV.13)

hence, the bead-trap displacement x
(i),r
n+ = x

(i)
n+1 − λ

(i)
n+ is drawn from a Gaussian distribution with null mean and

standard deviation σ(ts), i.e., π
(i)
+ (x

(i),r
n+ ) = N1

(
x
(i),r
n+

∣∣∣0;σ(ts)2). Figure 1 illustrates this reasoning.

In Fig. 3, we consider the d=2 case, for which the effective propagators become

Teff(z
r
n+ |u) =

∫ +∞

−∞
du′ N1

(
zrn+

∣∣∣ − e−ts
√

(u)2 + (u′)2 − (1− e−ts)δg;σ(ts)
2
)
· N1

(
u′ | 0;σ(ts)2

)
, (IV.14a)

T̃eff(z
r
n | v) = |v|Θ(−v) N1

(
zrn | 0;σ(ts)2

)
N1

(
e−ts v − (1− e−ts)δg | 0;σ(ts)2

)
I0

(
zrn

σ(ts)2
[e−ts v − (1− e−ts)δg]

)
,

(IV.14b)

with I0(·) the modified Bessel function of the first kind of order 0. To obtain the semi-analytical results in Fig. 3,
we discretized the effective propagator Teff(z

r
n+ |u) in a grid of 2, 000 × 2, 000 uniformly spaced points in the domain

zrn+ , u ∈ [−20, 20]. For the remaining propagator T̃eff(z
r
n|v), given the numerical instabilities of the modified Bessel

function, we used a much finer grid of 50, 000× 50, 000 points in the domain zrn, v ∈ [−20, 0].

V. HORIZONTAL THRESHOLD

Here we investigate whether it is more advantageous to exploit all such transverse fluctuations or only a subset,
by computing the maximum output power Pnet as a function of the radial threshold R for the transverse degrees of
freedom, as briefly discussed in Optimal performance in the main text.

We study the dependence of the output power on R in the high-sampling-frequency limit, for which we have already
shown that the performance is optimal. In this limit, the output power can be interpreted as the ratio of extracted
work to the first-passage time required for the bead to reach the cylinder. Two competing effects arise as a function
of the threshold R. On one hand, the extracted work per ratchet event increases with R: the larger the threshold, the
greater the radius at which the zero-work condition is met, and thus the more work is extracted. On the other hand,
the mean first-passage time also increases with R, since the bead must travel a greater distance before triggering a
trap update.

For a nonzero feedback threshold R, the trap center is adjusted only once the bead position projected onto the
transverse plane exceeds distance R from the trap center. For measurements at fixed time intervals τ , the output
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power Pnet is the ratio between the average gain ⟨∆F ⟩ in stored gravitational free energy per ratchet event and the
time between events:

Pnet(τ,R) ≡ ⟨∆F ⟩
τ

(V.1a)

=
δg
τ

〈
λ
(z)
n++1 − λ

(z)
n+

〉
(V.1b)

=
δg
τ

〈
zn+1 − λ

(z)
n+ +

√(
zn+1 − λ

(z)
n+

)2
+R2

〉
. (V.1c)

In Eq. (V.1b), we employed the definition of ⟨∆F ⟩ (9) and the feedback rule (11). Inserting the discrete Langevin

equation (5) and the vertical distance Ln ≡ λ
(z)
n+ − zn ≥ 0 gives

Pnet(τ,R) =
δg
τ

〈
(1− e−τ )(Ln − δg)− Ln +

√[
(1− e−τ )(Ln − δg) +

√
1− e−2τ ξn − Ln

]2
+R2

〉
. (V.2)

The overline indicates an average over noise realizations ξn drawn from a normal distribution of zero mean and unit
variance.

In principle, one would also need to average over all possible times τ between ratchet events. The distribution
of such times is the first-passage-time distribution for a bead starting at the origin, with an absorbing boundary at
the surface of a (d − 1)-dimensional hypersphere of radius R. Unfortunately, even for the simple case of harmonic
confinement, obtaining the first-passage distribution is non-trivial, beyond the scope of this paper. To estimate the
qualitative dependence of Pnet on R, we approximate the first-passage distribution as a Dirac-delta centered at the
mean first-passage time τMFP, obtained from the solution of the backward Fokker-Planck equation in d−1 dimensions,

−r⊤∇T(r) +∇2T(r) = −1 , (V.3)

with absorbing boundary condition

T(|r| = R) = 0 . (V.4)

The mean first-passage time is then

τMFP = T(0) . (V.5)

For d=2 this reduces to a one-dimensional problem with absorbing boundary conditions at r = ±R, with solution

τMFP =
R2

2
2F2

(
1, 1;

3

2
, 2;

R2

2

)
, (V.6)

for generalized hypergeometric function 2F2(a1, a2; b1, b2; z).
To compute the output power in (V.2), we need to determine the stead-state distribution for the trap-bead dis-

placements Ln. Given an initial Ln, fixed ratchet time τ = τMFP, and noise ξn, the trap-bead displacement after
ratcheting is

Ln+1 = λ
(z)
n++1 − zn+1 (V.7a)

=

√[
(1− e−τ )(Ln − δg) +

√
1− e−2τ ξn − Ln

]2
+R2 . (V.7b)

We obtain the propagator from Ln to Ln+1 by integrating over all possible noise realizations, giving

TL(Ln+1|Ln) ≡
∫ +∞

−∞
dξ δ

(
Ln+1 −

√[
(1− e−τ )(Ln − δg) +

√
1− e−2τ ξ − Ln

]2
+R2

)
N1(ξ | 0; 1) (V.8a)

=
Ln+1√

L2
n+1 −R2

[
N1

(
Ln − (1− e−τ )(Ln − δg)

∣∣∣√L2
n+1 −R2;σ(τ)2

)

+ N1

(
Ln − (1− e−τ )(Ln − δg)

∣∣∣ −√L2
n+1 −R2;σ(τ)2

)]
. (V.8b)
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FIG. 2. Semi-analytic computation of output power PHF
net from Eq. (V.10) as a function of the threshold R in the transverse

degree of freedom, for d=2 and δg=0.8. Inset: schematic showing bead (blue), trap center (red) and surrounding cylinder of
radius R.

We obtain the steady-state distribution for the trap-bead displacement by solving the integral eigenvalue problem

πL(L) =

∫ ∞

0

du TL(L|u)πL(u) . (V.9)

Similar to SM IV, we solve the integral eigenvalue problem from Eq. (V.9) by discretizing the propagator TL(L|u)
in a grid of 15, 000 × 15, 000 uniformly spaced points in the domain L, u ∈ [0, 20]. The corresponding steady-state
solution is the leading eigenvector of TL(L|u), with eigenvalue 1. The recurrence-like structure of (V.7b) allows further
simplification of the output power (V.2), giving

Pnet(R) =
δg
τ
(1− e−τ ) (⟨L⟩ − δg) . (V.10)

Figure 2 shows the output power in the high-sampling-frequency limit as a function of R. The output power
decreases monotonically with R, maximized at R = 0. That is, for any positive threshold, the gain in extracted work
per ratchet event is outweighed by the increased mean first-passage time between ratchet events.

VI. OUTPUT POWER FOR THE PARTIAL INFORMATION ENGINE

Here, for the partial information engine introduced in Ignoring vertical fluctuations in the main text, we derive the
analytical expression for the output power PHF

net in Eq. (VI.11a). Since we do not know the steady-state distribution

for the displacements zn+1 − λ
(z)
n+ a priori, we consider the general family of feedback rules parametrized by ω,

λ
(z)
n++1 = λ

(z)
n+ + ω +

√√√√ω2 +

d−1∑
j=1

(
∆x

(j)
n+1

)2
, (VI.1)

then compute the average
〈
zn+1 − λ

(z)
n+

〉
and set ω to match the feedback rule (15). In this context, ω constitutes the

(initially unknown) average change of the z-component of the trap-bead displacement. Here we derive a self-consistent

equation for determining ω, in such a way that it matches the steady-state average value
〈
zn+1 − λ

(z)
n+

〉
.

First, we compute the average of the bead-trap displacements zn − λ
(z)
n+ after ratcheting:〈

zn − λ
(z)
n+

〉
=
〈
zn+1 − λ

(z)
n++1

〉
(VI.2a)

=
〈
zn+1 − λ

(z)
n+

〉
− ω −R(ω, ts) (VI.2b)

= −R(ω, ts) , (VI.2c)
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with

R(ω, ts) ≡

〈√√√√ω2 +

d−1∑
j=1

(
x
(i)
n+1 − λ

(i)
n+

)2〉
(VI.3a)

=
Ωd

[2πσ(ts)2]d/2

∫ ∞

0

dr rd−2
√
ω2 + r2 e

− r2

2σ(ts)2 . (VI.3b)

In Eq. (VI.3b), we have taken into account that, although we do not know the steady-state distribution for the

relative displacement zn+1 − λ
(z)
n+ before ratcheting, the transverse displacements x

(i)
n+1 − λ

(i)
n+ , i = 1, ..., d − 1, follow

Gaussian distributions of zero mean and standard deviation σ(ts). We identify R(ω, ts) with the average radius of
the hypersphere defined by the zero-work condition ⟨Wn+1⟩ = 0 when z measurements are ignored—analogous to
|rn+1 − λn+ | from the feedback rule (10).
We compute the average from (VI.2a) using the Langevin equation (5) for zn+1:〈

zn − λ
(z)
n+

〉
=
〈
zn+1 − λ

(z)
n++1

〉
(VI.4a)

= e−ts
〈
zn − λ

(z)
n+

〉
− (1− e−ts)δg − ω −R(ω, ts) (VI.4b)

= − e−ts R(ω, ts)− (1− e−ts)δg − ω −R(ω, ts) . (VI.4c)

Combining (VI.2a) and (VI.4a) gives a self-consistent equation for ω:

ω = − e−ts R(ω, ts)− (1− e−ts)δg . (VI.5)

We now compute the output power in the high-sampling-frequency limit. The average of the variation of the trap-
center z-component over a short timestep dt is〈

dλ
(z)
n++1

〉
≡
〈
λ
(z)
n++1 − λ

(z)
n+

〉
(VI.6a)

=
〈
λ
(z)
n++1 − zn+1

〉
+
〈
zn+1 − λ

(z)
n+

〉
(VI.6b)

= R(ω, ts) + ω . (VI.6c)

Substituting the self-consistency equation (VI.5) for ω gives〈
dλ

(z)
n++1

〉
= ω + ets

[
−ω − (1− e−ts)δg

]
(VI.7a)

= −(ets −1)(ω + δg) (VI.7b)

≈ −ts(ω + δg), ts ≪ 1 . (VI.7c)

We also Taylor expand
〈
dλ

(z)
n++1

〉
(from the definition of feedback rule (VI.1)) in ts, given that for sufficiently short

times, the displacements dx
(i)
n+1 are also small, giving

〈
dλ

(z)
n++1

〉
≈ ω + |ω|+ 1

2|ω|

d−1∑
i=1

(dx
(i)
n+1)

2 (VI.8a)

= −ts
d− 1

ω
, ts ≪ 1 . (VI.8b)

Equation (VI.8a) is only consistent for ω < 0, since
〈
dλ

(z)
n++1

〉
must be an infinitesimal magnitude. From a physical

standpoint, since the trap-bead displacement λ
(z)
n+−zn before bead-position update is positive and the mean equilibrium

bead position lies below the trap due to gravity, the average of zn+1−λ
(z)
n+ is consistently negative. Combining (VI.6a)

and (VI.7a) gives a closed-form expression for ω in the high-sampling frequency limit,

ω + δg −
d− 1

ω
= 0 , (VI.9)
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giving

ω = −1

2

[
δg +

√
δ2g + 4(d− 1)

]
. (VI.10)

Substituting Eq. (VI.10) into Eq. (VI.8) gives the output power

PHF
net = δg

〈
dλ

(z)
n++1

〉
ts

(VI.11a)

≈ −δg
d− 1

ω
(VI.11b)

=
2(d− 1)

1 +
√
1 + 4(d− 1)/δ2g

. (VI.11c)

In the limit δg → ∞, the output power simplifies to the asymptotic value d− 1. Figure 4 shows Eq. (VI.11c) for the
output power as a function of δg, for different dimensions d.
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